Cheetah: Fast Graph Kernel Tracking on Dynamic Graphs
نویسندگان
چکیده
Graph kernels provide an expressive approach to measuring the similarity of two graphs, and are key building blocks behind many real-world applications, such as bioinformatics, brain science and social networks . However, current methods for computing graph kernels assume the input graphs are static, which is often not the case in reality. It is highly desirable to track the graph kernels on dynamic graphs evolving over time in a timely manner. In this paper, we propose a family of Cheetah algorithms to deal with the challenge. Cheetah leverages the low rank structure of graph updates and incrementally updates the eigen-decomposition or SVD of the adjacency matrices of graphs. Experimental evaluations on real world graphs validate our algorithms (1) are significantly faster than alternatives with high accuracy and (b) scale sub-linearly.
منابع مشابه
Fast subtree kernels on graphs
In this article, we propose fast subtree kernels on graphs. On graphs with n nodes and m edges and maximum degree d, these kernels comparing subtrees of height h can be computed in O(mh), whereas the classic subtree kernel by Ramon & Gärtner scales as O(n4h). Key to this efficiency is the observation that the Weisfeiler-Lehman test of isomorphism from graph theory elegantly computes a subtree k...
متن کاملA Fast Kernel for Attributed Graphs
As a fundamental technique for graph analysis, graph kernels have been successfully applied to a wide range of problems. Unfortunately, the high computational complexity of existing graph kernels is limiting their further applications to larger-scale graph datasets. In this paper, we propose a fast graph kernel, the descriptor matching (DM) kernel, for graphs with both categorical and numerical...
متن کاملFast Random Walk Graph Kernel
Random walk graph kernel has been used as an important tool for various data mining tasks including classification and similarity computation. Despite its usefulness, however, it suffers from the expensive computational cost which is at least O(n) or O(m) for graphs with n nodes and m edges. In this paper, we propose Ark, a set of fast algorithms for random walk graph kernel computation. Ark is...
متن کاملFast Incremental Minimum-Cut Based Algorithm for Graph Clustering
In this paper we introduce an incremental clustering algorithm for undirected graphs. The algorithm can maintain clusters efficiently in presence of insertion and deletion (updation) of edges and vertices. The algorithm produces clusters that satisfies the quality requirement, given by the bicriteria of [6]. To the best of our knowledge, this is the first clustering algorithm, for dynamic graph...
متن کاملMulti-Class Instance-Incremental Framework for Classification in Fully Dynamic Graphs
Existing work in the area of graph classification is mostly restricted to static graphs. These static classification models prove ineffective in several real life scenarios that require an approach capable of handling data of a dynamic nature. Further, the limited work in the domain of dynamic graphs mainly focuses on solely incremental graphs which fail to accommodate Fully Dynamic Graphs (FDG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015